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I. Introductiomn

One of the major deterrents to using Markov decision
processes (MDP) in real applications is the extremely large problem
size that may arise. Several authors (Koehler, Whinston, and Wright
[4]; Puterman [ 5]; and references cited by these papers) have attacked
this problem by developing more efficient solution algorithms for a
general MDP. In this paper, the more standard linear programming (LP)
approach is used. For a wide class of MDP's that arise in real
applications, the resulting LP can be greatly reduced in dimensionality.
This allows for efficient aggregation of the LP into smaller, easily
solved problems, as well as easily derived qualitative properties of
solutions.

The class of problems considered is similar to the separable
programs considered by Denardo [11]. However, the method of proof
is entirely different. This allows for the relaxation of the assumption
that the ome period return function be separable. The final rows
of the reduced LP can be interpreted in terms of the distribution
function of leaving each state; this fact, and the readily obtained
qualitative properties of a solution can often lead to even greater

reduction in problem size.



II. The Model and Main Results

Problems that arise in the context of capital accumulation
and consumption, managing renewable resources, reservoir management,
and inventory control and production, involve solving the following
mathematical program:

f(x) = maximum {G(x, y) + oEf(s[y, D]) : v € Y(x)}

(2.1)
x £ X
where X is the set of states, Y(x) is the set of feasible decisions

"gemi-

for each x € ¥, and D is a random variable. These are called
separable" problems {c.f., Denardo [1]) since the transition fumction
depends only on the decision, not on the state.

Tt is well known (see d'Epenoux [ 2]) that an optimal policy

to the discrete problem, if one exists, is a solution to the following

LP:
min Z f
xeX

(2.2)

subject to I (&_, - Py, >6(x, ¥) yeY¥Y®, xeX
jex *d 3773

0 if x # j

where Gx
1 if x = j

and P? is the discrete probability of going to state j given decision
i P§ can be obtained by discretizing s[y, D]. Fox [3] gives a
discussion of methods of discretizing a continuous problem. Note

also that the usual problem has Pch‘ However, by the semi-separable

assumption, Py, = pY.
X] J
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The equivalent dual problem is:

max &L z Gy vy
xeX ye¥(x) x X
j to: z )} - apyv = i
subject to (ij OLPj)vX 1 . jex (2.3)

xeX yveY(x)
vi_z 0 for allye Y(x); xe X

where Gi is the discrete equivalent of G(x, y).

In this section, attention is restricted to x, y scalar.
Section III shows that this is without loss of generality. Y(x) is

assumed to be of the form:
Y(x) = {y:0<y<x}. (2.4)

The cardinality of X, |Xl, is assumed to be n+l.
Theorem 2.1 shows that semi-separable MDP's have the
property that it is possible a priori to reduce the MDP to a MDP

that has two actions per state.

Theorem 2.1 For each j , 0 < j £ n, let b, = maximum
o0<i<g

*

37

maximum. Let A(j) be an optimal policy function. Then:

i i *
{Gl - Gh } , and let ij be defined as the i where bj obtains its

either A(])

Il
.

I
e

or A(3)
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Proof: Consider the dual LP (2.3). Since the rows are equalities,
add rows 1 through n to row 0 (row 0 is the first row constraint,
row n the last row constraint), rows 2 through n to row 1, etc.,

yielding a new LP:

n b4 i 5
maximize I I G v (2.5)
x=0i=0 * %
I s T | O 1
s.t 150 x§ zej —akEij v, = n+l-j i=0,1, .., n
v1 >0 x =0, ..v, 0
X—-—
i=0,1, ..., X
0 X<J
where 6x>' =
= 1 x>

Transform variables as follows: for each i, 1 =0, 1, ..., n

i i
Wn " Va
(2.6)
i i .
WJ j+1 = vj j=1i, i+l, ..., n
or equivalently:
i i
W =V
n n
i i i
= +
Yo-1 T Va7 Vnl
: 2.7)
Wl=vl+vl + ...+ v
i n n-1

The LP now becomes:



o x-1 i i i Box x
maximize X )} (G -G )W + I G w
. x x-1/ "x A X X
=0 1i=0 x=0
(2.8)
n n . , J .
s.t. X oi T X PIJ; wi + I W;=1‘1+1—_‘} j=0,1, ..., n
i=0o| ™ k=j 1=0
147
wiio j=0,1, ..., n
WJ—W;'_H__O =0, 1, cou, n-1, i =0, 1, v.u, j
For an arbitrary j, 1 < j < n, and for some i, 0 < ij < 3,
*
ij # ij » transform wvariables by:
i, i,
;J_J = W_J
] ]
-* ] -*
i, i, i,
G.J = W.:I + w J
1 ] J
or equivalently:
1. i,
w.l = w3
J J (2.9)
* %
i, i, i,
wd-ogd=ywd
] ] |

imize I e T
maximize Z 'Z % w1/ Y% 2 x
x=0 1i=0 x=0
Ly Lk
i#i
i#1,
J



n N . n
Zle],'+Zw=n+l-y y=0,1,...,m
k=y 1 1=0 _
Y y#3
i* {(2.10a)
ili, & J
w, + Z w. +w, = ntl-j
kft -0 J
. K
i= 1,
J
i=1,
J
=0, 1, ..., n
=0,1, ..., n-13
i=0,1, ..., ¥
(2.10b)
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-—i.
Examine the constraints involving W, :

* E3
I SR DA
v ds iy
i =3 j-1
_ij ij
Wj _Wj+1
*
_ij ij
. >
WJ _Wj
13 -ij
W, > W,
j-r — 73
* %
I P ) i,
J b 571

w, - W, .
i ¥l — 73

i,
Since W.J only appears in the constraints (2.10b), and has a nonpositive

objective function coefficient, at an optimal solution it will have a
*

. %
i, 3% i%
value at a lower bound, which is the greater of w.J s W,J - W,J .
i+’ j-1
__ij ij ij
If Wj = Wj+1’ then frem (2.7) and (2.9), Vj = 0.
0* l* . - -* » -*
_1j 1j lj 1j 1j 1j 1j
If w- - w, > w,”,, then from (2.) w,” = \w,” - w, - W,
3 j-1 " Y3-1 (2.3 vy b 3 j-1

which implies:

* *
i, i, i
2w = W - W,
J 3 j-1
From (2.8),
* *
i, i i
0 >w Jow = 2wt >0
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i, ij ij ij ij
iz ; - - . .
so that wj = 0. Since Wj Z~Wj+l’ then wj Wj+1 0, which implies
i,
ij Z 0. Since j and ij were chosen arbitrarily, the proof holds for

each j and ij.

O

The transformations in theorem 2.1 are only necessary to
%
prove that an optimal peclicy chooses either x or ix' Corollary 2.1
gives the reduced LP.

*
Corollary 2.1 Imn (2.2), let ij be defined as in theorem 2.1.

—— ——————— e S ettt A———

Then, an optimal solution to:

n
minimize I f
X
x =0
u i i
s.t. z (5 - oP )f > G, i=0,1, ..., n
i e i
x=0
" . (2.11)
n lj lj
z ) - oP f >cG i=0,1, ..., n
% - > > 1]
x=01\ i.x x x J
J
is also an optimal solution to (2.2).
Proof: TImmediate consequence of theorem 2.1.
EI

An alternate form to (2.11), which is sparser when computations

are done 1is:



n
minimize I f
x
x=0
n i i i
s.t. P (6 - oP )f - A, =G i=0,1, ..., n
ix X/ X i i
x=0
x  x % (2.12)
i i, i
£, ~f ,+A3-A3=¢7 3=0,1, ..., n
L T S ]
J
&
i
Ai s Aj >0 i=0,1, ..., n

which is derived by making the constraints in (2.11) equalities, and
then subtracting the appropriate rows.

For certain special cases, the results of theorem 2.1 can
be made stronger, and derived more directly. This is especially true
of separable MDP's (Denardo [i] Y. Let G(x, v) = a(x) + b(y).

Transform variables by:

f0 -~ Y%
fi = I vy i=1, ..., n
i=0
or equivalently:
u, = fl - fi—l i=0,1, ..., n

It is straightforward to show that at an optimal solution:

f: > (a(i) - a(i-l)) + f:_l (2.13)
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when equation (2.13) is valid, all the rows equivalent to choosing j
as the action are redundant with:
- i
z (ny - aPX)fx > a(j) + b(3)
x=0
_ N ey ca
fj+1 fj+i—1 > a(j+i) - a(j+i-1)

i=1, 2, ..., n-j

This leads to a reduced LP:

n
minimize I {(ntl-x)u
X
x=0
a n ; (2.14)
_ 5 . . .
s.t X 6x<3 o 'g Pi u >a(d +b() j=0,1, ..., n
x=0 — i=x
v > a(x) - a(x-1) x=1, 2, ..., n
where § . denotes:
x<]
1 X <]
8 , =
x<) 0 x > 3

The LP in (2.14) can be sclved with a (n+l X nt+l) constraint
matrix. The equivalent formulation in Denardo (1968) has a (2n+2 X ntl)

constraint matrix.

IIT. Extensions and Discussion

The proof of theorem 2.1 does not depend on x, y being scalars.
It only depends on the semi-separable assumption, and the assumption the
Y(x) = {y:0 <y < x}. The vector case is proven in a similar manner.
The dual variables are again grouped by choosing action y from all

states x > y, and then making the same transformations of variables.
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The LP (2.11) can be solved using linear programming, or else
can be solved using successive approximations or similar iterative
techniques (see Koehler et al. [ 4 }; Puterman { 5]) with a reduced
action space. The reduced LP can also be used to prove qualitative
results about optimal policies when further assumptions are made on
the form of G(+, *). This will be explored more fully in a future paper.

Even with the reduction in problem size between (2.11) and
(2.2), for many real applications any useful discrete state space
will still bring about an exceedingly large LP. However, the reduced
LP gives more insight into how to effectively aggregate rows or
columns in order to further reduce the size of the LP, using results

similar to those in Zipkin [6].
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